Exotic Ashva Probs

Exotic betting refers to an extremely popular group of horse racing wagers that allows you to make multiple bets on multiple ponies in a single bet. Exotic Bet requires a high degree of expertise and knowledge in picking. They are more difficult and have higher risk compared to simple win and place bet types however exotic bet types offer very attractive returns. Some of the very common exotic bet types are mentioned below.

 

Quinella: Pick the first and second runner, in any order. 

Exacta: Pick the first and second runner in the exact finishing order.

Trifecta / Triple: Pick the first three runners in the exact finishing order.

Superfecta / Exact-4 / First Four: Pick the first four runners in the exact finishing order.

Pentafecta / Exact-5: Pick the first five horses finishing the race in exact order.

Hexafecta / Exact-6: Pick the first six horses finishing the race in exact order.

 

As the exact order increases, the chance of winning the races decreases, and payout increases. In this section, we are going to explain how we can make use of Ashva win probs to generate the exotic Ashva Probs and generate the wager. We have used the harville method to generate Ashva exotic probs from Ashva win probs. This is a bit complicated, requiring a very powerful machine if you are going for higher-order exotics [Superfecta or higher]. We are going to show the method for the Exacta pool which can be generalized to other pools as well. 

 

<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mrow><mi mathvariant="italic">i</mi><mi mathvariant="italic">j</mi></mrow></msub><mo mathvariant="italic">&#xA0;</mo><mo mathvariant="italic">=</mo><mo mathvariant="italic">&#xA0;</mo><mfrac><mrow><msub><mi mathvariant="italic">P</mi><mi mathvariant="italic">i</mi></msub><msub><mi mathvariant="italic">P</mi><mi mathvariant="italic">j</mi></msub></mrow><mrow><mn mathvariant="italic">1</mn><mo mathvariant="italic">-</mo><msub><mi mathvariant="italic">P</mi><mi mathvariant="italic">i</mi></msub></mrow></mfrac></math>

Where

 <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mi>P</mi><mi>r</mi><mi>o</mi><mi>b</mi><mi>a</mi><mi>b</mi><mi>i</mi><mi>l</mi><mi>i</mi><mi>t</mi><mi>y</mi><mo>&#xA0;</mo><mi>o</mi><mi>f</mi><mo>&#xA0;</mo><mi>h</mi><mi>o</mi><mi>r</mi><mi>s</mi><mi>e</mi><mo>&#xA0;</mo><mi>i</mi><mo>&#xA0;</mo><mi>w</mi><mi>i</mi><mi>n</mi><mi>s</mi><mo>&#xA0;</mo><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi><mo>&#xA0;</mo><mi>a</mi><mi>n</mi><mi>d</mi><mo>&#xA0;</mo><mi>h</mi><mi>o</mi><mi>r</mi><mi>s</mi><mi>e</mi><mo>&#xA0;</mo><mi>j</mi><mo>&#xA0;</mo><mi>w</mi><mi>i</mi><mi>n</mi><mi>s</mi><mo>&#xA0;</mo><mi>s</mi><mi>e</mi><mi>c</mi><mi>o</mi><mi>n</mi><mi>d</mi><mo>.</mo><mspace linebreak="newline"/><msub><mi>P</mi><mi>i</mi></msub><mo>=</mo><mi>P</mi><mi>r</mi><mi>o</mi><mi>b</mi><mi>a</mi><mi>b</mi><mi>i</mi><mi>l</mi><mi>t</mi><mi>y</mi><mo>&#xA0;</mo><mi>o</mi><mi>f</mi><mo>&#xA0;</mo><mi>h</mi><mi>o</mi><mi>r</mi><mi>s</mi><mi>e</mi><mo>&#xA0;</mo><mi>i</mi><mo>&#xA0;</mo><mi>w</mi><mi>i</mi><mi>n</mi><mi>s</mi><mo>&#xA0;</mo><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi><mspace linebreak="newline"/><msub><mi>P</mi><mi>j</mi></msub><mo>=</mo><mi>P</mi><mi>r</mi><mi>o</mi><mi>b</mi><mi>a</mi><mi>b</mi><mi>i</mi><mi>l</mi><mi>t</mi><mi>y</mi><mo>&#xA0;</mo><mi>o</mi><mi>f</mi><mo>&#xA0;</mo><mi>h</mi><mi>o</mi><mi>r</mi><mi>s</mi><mi>e</mi><mo>&#xA0;</mo><mi>j</mi><mo>&#xA0;</mo><mi>w</mi><mi>i</mi><mi>n</mi><mi>s</mi><mo>&#xA0;</mo><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi><mspace linebreak="newline"/></math> 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="14px"><mrow><mi>P</mi><mfenced><mrow><mi>h</mi><mi>o</mi><mi>r</mi><mi>s</mi><mi>e</mi><mo>&#xA0;</mo><mi>n</mi><mi>o</mi><mo>&#xA0;</mo><mn>1</mn><mo>&#xA0;</mo><mi>w</mi><mi>i</mi><mi>n</mi><mi>s</mi><mo>&#xA0;</mo><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi><mo>&#xA0;</mo><mi>&amp;</mi><mo>&#xA0;</mo><mi>h</mi><mi>o</mi><mi>r</mi><mi>s</mi><mi>e</mi><mo>&#xA0;</mo><mi>n</mi><mi>o</mi><mo>&#xA0;</mo><mn>2</mn><mo>&#xA0;</mo><mi>w</mi><mi>i</mi><mi>n</mi><mi>s</mi><mo>&#xA0;</mo><mi>s</mi><mi>e</mi><mi>c</mi><mi>o</mi><mi>n</mi><mi>d</mi></mrow></mfenced><mo>=</mo><mi>P</mi><mfenced><mrow><mi>h</mi><mi>o</mi><mi>r</mi><mi>s</mi><mi>e</mi><mo>&#xA0;</mo><mi>n</mi><mi>o</mi><mo>&#xA0;</mo><mn>1</mn><mo>&#xA0;</mo><mi>w</mi><mi>i</mi><mi>n</mi><mi>s</mi><mo>&#xA0;</mo><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi></mrow></mfenced><mo>&#xA0;</mo><mfrac><mrow><mi>P</mi><mfenced><mrow><mi>h</mi><mi>o</mi><mi>r</mi><mi>s</mi><mi>e</mi><mo>&#xA0;</mo><mi>n</mi><mi>o</mi><mo>&#xA0;</mo><mn>2</mn><mo>&#xA0;</mo><mi>w</mi><mi>i</mi><mi>n</mi><mi>s</mi><mo>&#xA0;</mo><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi></mrow></mfenced></mrow><mrow><mn>1</mn><mo>-</mo><mo>&#xA0;</mo><mi>P</mi><mfenced><mrow><mi>h</mi><mi>o</mi><mi>r</mi><mi>s</mi><mi>e</mi><mo>&#xA0;</mo><mi>n</mi><mi>o</mi><mo>&#xA0;</mo><mn>1</mn><mo>&#xA0;</mo><mi>w</mi><mi>i</mi><mi>n</mi><mi>s</mi><mo>&#xA0;</mo><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi></mrow></mfenced></mrow></mfrac></mrow></mstyle></math>

 

Let's take an example of "Top N Strategy" from our previous blog to explain the process of conversion. We have a total of 7 horses in a race, so we can make a total n(n-1)=7*(7-1) = 42 exacta combinations.

 

Race date: 20201106 Track: Keeneland RaceNo: 8
Prg No. Horse Name EAP LAP official finish
1 Simply Ravishing 0.17820038 0.18435283 4
2 Vequist 0.17412782 0.17785375 1
3 Day out of the office 0.23719497 0.22881147 2
4 Thoughtfully 0.01719134 0.01634676 7
5 Girl Daddy 0.13628366 0.13368012 3
6 Crazy Beautiful 0.04619097 0.04596937 6
7 Princess Noor 0.21081086 0.21298570 5

 

We have calculated Exacta Ashva probs based on the formula mentioned above. It is mentioned in the following table.

 

Exacta
combinations
Pi Pj Pi*Pj 1-Pi Exacta
prob
1-2 0.178200 0.174128 0.031030 0.821800 0.037758
1-3 0.178200 0.237195 0.042268 0.821800 0.051434
1-4 0.178200 0.017191 0.003064 0.821800 0.003728
1-5 0.178200 0.136284 0.024286 0.821800 0.029552
1-6 0.178200 0.046191 0.008231 0.821800 0.010016
1-7 0.178200 0.210811 0.037567 0.821800 0.045713
2-1 0.174128 0.178200 0.031030 0.825872 0.037572
2-3 0.174128 0.237195 0.041302 0.825872 0.050010
2-4 0.174128 0.017191 0.002993 0.825872 0.003625
2-5 0.174128 0.136284 0.023731 0.825872 0.028734
2-6 0.174128 0.046191 0.008043 0.825872 0.009739
2-7 0.174128 0.210811 0.036708 0.825872 0.044448
3-1 0.237195 0.178200 0.042268 0.762805 0.055412
3-2 0.237195 0.174128 0.041302 0.762805 0.054145
3-4 0.237195 0.017191 0.004078 0.762805 0.005346
3-5 0.237195 0.136284 0.032326 0.762805 0.042378
3-6 0.237195 0.046191 0.010956 0.762805 0.014363
3-7 0.237195 0.210811 0.050003 0.762805 0.065552
4-1 0.017191 0.178200 0.003064 0.982809 0.003117
4-2 0.017191 0.174128 0.002993 0.982809 0.003046
4-3 0.017191 0.237195 0.004078 0.982809 0.004149
4-5 0.017191 0.136284 0.002343 0.982809 0.002384
4-6 0.017191 0.046191 0.000794 0.982809 0.000808
4-7 0.017191 0.210811 0.003624 0.982809 0.003688
5-1 0.136284 0.178200 0.024286 0.863716 0.028118
5-2 0.136284 0.174128 0.023731 0.863716 0.027475
5-3 0.136284 0.237195 0.032326 0.863716 0.037426
5-4 0.136284 0.017191 0.002343 0.863716 0.002713
5-6 0.136284 0.046191 0.006295 0.863716 0.007288
5-7 0.136284 0.210811 0.028730 0.863716 0.033263
6-1 0.046191 0.178200 0.008231 0.953809 0.008630
6-2 0.046191 0.174128 0.008043 0.953809 0.008433
6-3 0.046191 0.237195 0.010956 0.953809 0.011487
6-4 0.046191 0.017191 0.000794 0.953809 0.000833
6-5 0.046191 0.136284 0.006295 0.953809 0.006600
6-7 0.046191 0.210811 0.009738 0.953809 0.010209
7-1 0.210811 0.178200 0.037567 0.789189 0.047601
7-2 0.210811 0.174128 0.036708 0.789189 0.046514
7-3 0.210811 0.237195 0.050003 0.789189 0.063360
7-4 0.210811 0.017191 0.003624 0.789189 0.004592
7-5 0.210811 0.136284 0.028730 0.789189 0.036405
7-6 0.210811 0.046191 0.009738 0.789189 0.012339

 

You can make use of any of our picking strategies explained in the previous post for selecting the horses. For simplicity, we are using Top-N strategy again. The total number of combinations is 42 and 30% of 42 gives us 12 combinations. After sorting the Exacta probs we have selected below 12 combinations. You can see that we have picked winning combinations in our selections i.e. 2-3 @ $24 for $1 of investment. The investment strategy explained in the previous post suggests us investing 8% of your total amount on the selection 2-3. Based on $100 total bet amount, if we invest $8 on the selection 2-3 will end up getting a return of $190. Which means we have profitable winning. We have mentioned a couple of other strategies as well on our previous blog. You can try and test them all.

 

Combinations Pi Pj Pi*Pj 1-Pi Exacta prob Investment
3-7 0.2371950 0.2108109 0.0500033 0.7628050 0.0655518 10.85%
7-3 0.2108109 0.2371950 0.0500033 0.7891891 0.0633603 10.48%
3-1 0.2371950 0.1782004 0.0422682 0.7628050 0.0554116 9.17%
3-2 0.2371950 0.1741278 0.0413022 0.7628050 0.0541452 8.96%
1-3 0.1782004 0.2371950 0.0422682 0.8217996 0.0514337 8.51%
2-3 0.1741278 0.2371950 0.0413022 0.8258722 0.0500105 8.28%
7-1 0.2108109 0.1782004 0.0375666 0.7891891 0.0476015 7.88%
7-2 0.2108109 0.1741278 0.0367080 0.7891891 0.0465136 7.70%
1-7 0.1782004 0.2108109 0.0375666 0.8217996 0.0457126 7.56%
2-7 0.1741278 0.2108109 0.0367080 0.8258722 0.0444476 7.35%
3-5 0.2371950 0.1362837 0.0323258 0.7628050 0.0423775 7.01%
1-2 0.1782004 0.1741278 0.0310296 0.8217996 0.0377582 6.25%
Total 0.6043241

 

You can extend the above formula to calculate more complex exotic pools like a Trifecta, Superfecta, Pentafecta and so on. As of now, Ashva probs only display win probabilities and we have future plans to display exotic probs on our platform. It's always up to the user how much risk he is willing to take on however Ashva probs helps users to take calculated risk instead of going blind. Feel free to contact us with any doubts regarding implementation.

Comments

  1. I always check this type of advisory post and I found your article which is related to my interest. This is a great way to increase knowledge for us. Thanks for sharing an article like this. Singapore pools horse racing odds

    ReplyDelete
  2. I found decent information in your article. I am impressed with how nicely you described this subject, It is a gainful article for us. Thanks for share it. Singapore horse racing live odds

    ReplyDelete
  3. A very delightful article that you have shared here.online betting site fish hunter Your blog is a valuable and engaging article for us, and also I will share it with my companions who need this info. Thankful to you for sharing an article like this.

    ReplyDelete
  4. This comment has been removed by the author.

    ReplyDelete
  5. I generally check this kind of article and I found your article which is related to my interest.online slot machine singapore Genuinely it is good and instructive information. Thankful to you for sharing an article like this..

    ReplyDelete

Post a Comment

Popular posts from this blog

Picking and Placing (2P’s)

Bet the better way using Ashva Probs